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Rotation of a cylinder about an eccentric parallel axis 
in a viscous fluid 
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A circular cylinder in an infinite fluid rotates rigidly about a fixed axis which is 
parallel to, but does not coincide with, its geometric axis. It is found that, 
depending on the relative magnitude of the Reynolds number R and eccentricity 
8, the flow may have two, one or no boundary layers. General solutions for 
R .g e-8 are obtained. It is found that owing to eccentricity there exist both a 
flow periodic in the circumferential direction and a non-periodic flow which is a 
function only of the radial distance from the centre of the cylinder. The non- 
periodic flow is caused by the nonlinear Reynolds stress and contributes to the 
torque experienced by the cylinder. The high Reynolds number case, 

1 .g R < e-%, 

is solved by matched asymptotic expansions. The stream function can be repre- 
sented by Hankel functions of order +, and a slight decrease in torque is found. 
In  the low Reynolds number case, R 1, the torque is increased owing to eccen- 
tricity when R < 0.145 and decreased when R > 0-145. A physical explanation 
is presented. 

1. Introduction 
Rotating circular cylinders or shafts immersed in viscous fluids play an im- 

portant role in many engineering devices. Often the rotation axis is parallel to 
but may not coincide with the geometric axis of the cylinder, owing either to 
imprecise machining, to worn out bearing supports, or to elastic instability 
caused by centrifugal forces. Although the eccentricity, i.e. the distance between 
the two axes divided by cylinder radius, is usually small, it  does perturb the 
surrounding fluid. This paper investigates the perturbed flow field and the 
additional torque and forces caused by eccentricity. 

Let us consider a cylinder of radius a which is rotating counter-clockwise with 
angular velocity w about the rotation axis B in a viscous fluid (figure 1). The 
distance between the rotation axis B and the geometric axis 0 is €a, where E ,  

the eccentricity, is small compared to unity. We then normalize all lengths by a, 
velocities by wa, and the time by l l w .  

Now the boundary conditions are difficult to apply in the inertial frame x', y' 
whose origin lies on the fixed point at B. These conditions are simplified if we 
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1 I 1 

FIGTJRE 1. The co-ordinate system and nomenclature. 
N = normal force, D = drag, 11 = torque. 

consider a translational frame x, y (or r,  8, in polar co-ordinates) attached to the 
moving point at 0. The relationship between these co-ordinates is 

rcos8 E x = x'fesint, 
rsin8 = y = yl-€cost. 

(1 .1)  
(1.2) 

Let u and v be the velocity components relative to  the translating frame in the 
directions of r and 8 respectively. These velocities differ from the corresponding 
velocities in the inertial frame (u', v') by a uniform translational motion: 

u-UI = scos(O-t), (1.3) 

v-w' = -esin(O-t). (1.4) 

u=O, w = l  on r = 1 ,  (1.5) 

u-+ecos(B-t), v+ -esin(O-t) as r+w. (1.6) 

The boundary conditions become 

The governingINavier-Stokes equation then becomes 

where Y = JrUd8 = -1wdr is the stream function and R = wa21v is the Reynolds 
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number. Owing to symmetry we can see at once that the stream function Y 
depends on only two variables, r and x, where x = 6 - t. Thus 

where 

and the boundary conditions are 

Y =  0, a Y p =  - 1  on r =  1, (1.9) 
Y-tersinx as r+m. (1.10) 

The boundary conditions suggest that we also deduct the primary flow, an 
irrotational vortex, from our solution. We set 

Y = -lnr+e$(r,x), (1.11) 

where e$ represents the perturbation due to eccentricity. The problem then 
becomes 

(1.12) 

with the boundary conditions 
$ =  0, a$/&= 0 on r =  1, (1.13) 

$+rsinX m r-fco. (1.14) 

2. Simplifications of the governing equation 
In the ( r , ~ )  co-ordinates the flow is steady and boundary conditions (1.13) 

and (1.14) suggest a uniform flow past a circular cylinder. The governing equation 
(1.12), however, is quite different from the usual form of the Navier-Stokes 
equations. Many different simplifications can be made depending on the magni- 
tude of the Reynolds number. For large Reynolds numbers, we take 

R = ~ / I Y ,  r = 1 +ePr], 

where a, 8, and y are constants of order unity and 7 is a stretched variable. The 
orders of magnitude of the separate terms in (1.12) become 8-8, el-38, and €7-48 

respectively. We see that the nonlinear terms are important only when 
1-3Pg y-48 and 1 - 3 8 <  -8. 

Therefore the nonlinear terms can be important only in a boundary-layer region 
of order €4 when also R is of order E-% or larger. The flow is primarily linear 
when R < d. 

As the Reynolds number varies from inifinity to  zero, the parameter y changes 
from + co to  - 00. A careful study of the relative magnitudes of the terms in 
(1.12) yields the five cases given below, which are distinguished through the five 
different simplifications of the governing equation as y is varied. In  cases 1, 2 
and 3 equation (1.12) presents singular perturbation problems. In these cases 
the radial co-ordinate r has to  be stretched, indicating the existence of boundary 
layers near the cylinder. 

4-2 



52 C. -Y. Wang 

The leading terms give 
Case 1 : 00 > y > +. Two co-existing boundary layers of order e7-l and d exist. 

-a($> $Ja(% x) = ( 1 / 4  $qq7q for P 2 Y - 1, (2.1) 

(2.2) 
a(Vz$)/ax = 0 for p < Q. (2.3) 

- 211$x7q - a($, $qJ/a(% x) = (1la) $?lq77 for P 2 *> (2.4) 

a(Vz$)/ax = 0 for p < g. (2.5) 

-211$xq7 = ( 1 / 4 $ q q 7 q  for P 2 +Y, (2.6) 

a(V2$)/ax = 0 for p < QY. (2.7) 

- 211$x?lq - a($, $T17p(% x) = 0 for Y - 1 > P 2 4, 

Case 2: y = 4. There exists one boundary layer of order d.  

Case 3: > y > 0. There exists one boundary layer of order &. 

Case 4: y = 0. There are no boundary layers for any value of P. 

Case 5: 0 > y > - 00. There are no boundary layers for any value of p, 
a 1 1 

(2.9) 

For low Reynolds numbers, the Stokes solution of V4$ = 0 fails at a distance of 
r M e-*lYI, which is the well-known ‘Stokes paradox’. Equation (2.9) represents 
the governing equation for r b e-81yI. Since it also includes the Stokes solution 
V4$ = 0, we shall use it for the entire range of r .  

In  the remainder of this paper we study in detail cases 3, 4 and 5, for which 
the nonlinearities do not enter the zeroth-order perturbations. 

- - V2$ = - V4$ - V4$. 
8X a& R 

3. General considerations for R < e-8 

and a non-periodic part denoted by $(r) : 
Let us separate the stream function into a periodic part denoted by $(r,x) 

$ = $(c x) + iw7 (3.1) 
where $( r )  is given by the average 

where { )  and [-] denote the periodic and non-periodic parts of the product 
respectively. 
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From the discussion in 8 2, if R = ae-y ,  where a is a constant of order unity and 
- 00 < y < 3, the nonlinear terms in (3.3) could never become important at any 
radius r .  Hence the leading terms are 

(3.5) 

The solution of (3.5) together with the boundary conditions $(l,x) = 0,  
a$( 1, x)/ar = 0 and $(m, x) --f - ir eix is 

where K = (I + iR)f  and H f )  is the Hankel function of the first kind with com- 
plex argument and complex order. The non-periodic solution is then obtained 
from (3.4): 

V4$(r) = 4B(r), (3.7) 

where 

$* being the complex conjugate of $. The solution to (3.7) is 

(3.9) 
where we have made use of the boundary conditions that the velocities be zero 
on r = 1 and as r-+co. 

The periodic flow (3.6) creates pressure and shear-stress distributions on the 
cylinder. Substitution into the Navier-Stokes equation for the 19 velocity com- 
ponent yields 

where a tilde indicates 'the periodic part'. If the normal force N ,  the drag D 
and the torque T are in the directions shown in figure 1, then the forces due 
to the periodic flow $ are 

N = a /  (fcosX-PsinX)dX, (3.12) 
2n 

0 

f 271 
D = aJ (-?sinX-pcosX)dX. 

0 
(3.13) 
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The normal force does not contribute to the torque but the drag force yields a 
torque 

T = m 2 / 0 2 n (  - i sin x - p cos x) dX. (3.14) 

The non-periodic flow g ( r )  gives no force but yields a torque 

(3.15) 

If the Reynolds number R is of order unity, then p, .i: and B are of order e and 
both T and T‘ are of order s2. We see that the linear secondary flow $ and the 
nonlinear secondary flow contribute equally to the additional torque ex- 
perienced. The total torque is the sum of the torque due to the irrotational 
vortex In r in (1.11) and the additional torque due to secondary flows: 

qotal = 27ra2pw + T + T’ . (3.16) 

Very little physical insight can be obtained from the general solutions (3.6) 
and (3.9) because these involve integration of complicated Hankel functions. In  
what follows we study cases 3 and 5, for which the solution becomes simpler, at  
the expense of applicability in a more restricted range of Reynolds numbers. 

4. High Reynolds numbers 1 < R < E-% 

Since the leading terms of the governing equation retain the same form for this 
range of Reynolds numbers we can take R = a/€ to represent this regime, without 
loss of generality. According to the discussion in 0 2 there exists a boundary layer 
of O(&) near the cylinder. We now use the method of inner and outer expansions, 
which is much simpler than taking the proper limits of (3.6) and (3.9). 

From (2.7) the outer flow is potential since it is irrotational at  infinity. The 
solution is thus 

Inside the boundary layer we set r = 1 + $7 and 9 = &${, so that the governing 

qF0 = - i(r - ~ / r )  eix. (4.1) 

equation is 
- 

or f’”(7) + 2ayif” = 0, (4.3) 

where ${ = f (y )  eix. The solution which matches the outer flow (4.1) at infinity 
and has zero velocity on the boundary is 

f(7) = 3%-*7P($Z&a*y%) + 3%87G(32ta47%) + r(+)3&+/~(2a)f, (4.4) 

P(h) = Hg)(;aA)dh, (4.5) 

(4.6) G(h) = Hf)( i*A).  

To the author’s knowledge, there are only two tabulations of Hankel functions 
of order +. General complex arguments have been tabulated by the Harvard 
Computation Laboratory (1945), but this source is very inconvenient to use for 

s,” where 
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an argument of i*A. The other tabulation is due to Chang (1948), in connexion 
with the elastic deformation of toroidal shells. Chang's tables of Ht)( iJA)  have 
numerous errors, however. A more refined set of values of Hf)( i*A)  together 
with Hf)( i*h) ,  correct to six significant figures, is presented in table 1. The 

integral Hf)( i*A) d h  is tabulated in table 2. The Hankel functions were cal- 

culated by means of computer program NBS HF13 for general complex argu- 
ments supplied by the U.S. Department of Commerce. The series representation 
is used for small arguments and the asymptotic form is used for large arguments. 
The integral of H t )  is obtained by Simpson's rule with the error estimated by 
varying the range and mesh size of numerical integration. Since 

!A* 

P ( ~ )  = q ( i + A ) a A  = (2 /3~)  i-t = 0 . 2 9 ~ ~ 5 ~ - i . i i 5 3 5 5 i ,  (4.7) Som 
F ( h )  can be easily obtained from the table by subtraction. 

The boundary-layer flow $i in turn creates a higher order outer flow: 

A uniformly valid composite solution for the periodic stream function can also 
be constructed: 

+ d[3*i-b,G7($2h~*$) + 3*ijvG(g2hx*$)] + O(d) .  (4.9) 

Outside the boundary layer of O ( d )  the vorticity V2$, and thus the driving 
term of (3.4), decay exponentially to zero. To balance this, the order of the non- 
periodic flow qi(q) must e times as high as that of go(., x). We thus have 

(4.10) 

(4.11) 
d2 

where M r )  = iiaf(v) @f*m 

f * being the complex conjugate off. The solution is 

After matching, the outer solution becomes the vortex 

The uniformly valid solution of the non-periodic flow is then 

(4.12) 

(4.13) 
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h 
0 

0.2 
0.4 
0.6 
0-8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.2 
3.4 
3.6 
3.8 
4-0 
4.2 
4.4 
443 
4.8 
5.0 
5.2 
5.4 
5.6 
5.8 
6.0 
6.2 
6.4 
6-6 
6.8 
7.0 
7.2 
7.4 
7.6 
7-8 
8.0 
9.0 

10.0 
11.0 
12.0 
13.0 
14.0 
15.0 
16.0 
17-0 
18.0 
19.0 
20.0 

-a3 

- 0'074507 
0.088990 
0.158068 
0.187598 
0.195821 
0.191 568 
0.179930 
0.164122 
0.146268 
0.127798 
0.10967 1 
0.092515 
0.076716 
0.062491 
0.049926 
0.039022 
0.02971 6 
0.021904 
0.015455 
0.010228 
0.006074 
0.002849 
0.000413 

- 0'001360 
- 0.002592 
- 0.003384 
- 0.003828 
- 0'004005 
- 0.003980 
-0'003810 
- 0.003542 
- 0.003212 
- 0.002849 
- 0.002477 
- 0.0021 11 
-0.001763 
- 0.001443 
- 0'001153 
- 0'000898 
- 0*000676 
- 0.000025 

0.000 129 
0.000098 
0.000041 
0.000008 

- 0.000003 
- 0.000004 
- 0~000002 
- 0~000000 

0~000000 
0~000000 
0~000000 

-a, 

- 1.346130 
- 0.866273 
-0.611439 
- 0.443076 
- 0.322020 
- 0.231570 
- 0.162837 
- 0.110362 
- 0'070434 
- 0.040351 
- 0.018050 
-0'001904 

0.009392 
0.016899 
0.021480 
0.023840 
0-024549 
0.024068 
0.022766 
0-020932 
0.018791 
0.016514 
0.0 1422 9 
0.0 12026 
0.009967 
0.008091 
0.006418 
0.004957 
0.003705 
0.002652 
0.001783 
0.001081 
0.000527 
0~000102 

- 0~000212 
- 0.000434 
- 0'000581 
- 0'000667 
- 0.000706 
- 0'000708 
- 0'000454 
- 0.000169 
- 0~00002 1 

0~000022 
0~000020 
0~000010 
0~000002 

- 0~000000 
- 0~000000 
- 0~000000 
- 0~000000 
- 0~000000 

-a2 

- 09776625 
- 0.322633 
-0.128633 
- 0.022740 

0.039124 
0.075045 
0.094408 
0.10281 6 
0.103908 
0.100183 
0.093404 
0.084836 
0.075390 
0.0657 12 
0.056256 
0.047324 
0.039109 
0.031719 
0.025199 
0-019548 
0.014734 
0.010702 
0.007385 
0.004708 
0.002592 
0.000962 

- 0.000256 
- 0.001130 
-0.001722 
- 0.002088 
- 0.002275 
- 0.002325 
-00-002274 
-0.002151 
- 0.001980 
- 0.001780 
-0'001568 
- 0.001353 
- 0.001145 
- 0'000950 
- 0.000247 

0.000030 
0.000075 
0.000047 
0.00001 7 
0~000001 

- 0~000002 
- 0~000002 
- 0~000001 
- 0~000000 

0~000000 
0~000000 

-a, 

- 1.704071 
- 1.024403 
- 0.726528 
- 0.544138 
- 0.415929 
-0'319521 
- 0.244494 
- 0.185123 
-0.137844 
- 0.100207 
- 0.070401 
- 0.04701 1 
- 0.028890 
-0.015090 
- 0.004814 

0.002609 
0.007750 
0.011087 
0.013022 
0-013889 
0.013964 
0.013472 
0.012593 
0.01 1470 
0.0102 17 
0.008916 
0.007632 
0.006408 
0.005274 
0.004248 
0.003340 
0.002551 
0.001879 
0.001317 
0.000856 
0.000487 
0.000198 

- 0~000020 
-0~000180 
- 0.000291 
- 0.000389 
- 0.0002 13 
- 0.000067 
- 0~000000 

0.000014 
0~000010 
0.000004 
0~000000 

- 0~000000 
- 0~000000 
- 0~000000 
- 0~000000 

TABLE 1 
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h 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

+ 0.298858 
+ 0.276364 
+ 0.107304 
+0.021364 
- 0.005753 
- 0.008051 
- 0.004350 
-0.001340 
- 0~000012 
+ 0.000281 
+ 0.000203 
+ 0.000083 
+ 0.000014 
- 0'000008 
- 0~000009 
- 0'000004 
- 0~000001 
+ 0~000000 
+ 0~000000 
+ 0~000000 
+ 0~000000 

TABLE 2 

- 1.115355 
- 0.106150 
+ 0.043830 
+ 0.044075 
+ 0.020699 
+ 0.005297 
- 0.000581 
-0.001513 
- 0'000938 
- 0.000336 
- 0.000033 
+ 0~000050 
+ 0.000043 
+ 0~000020 
+ 0.000004 
- 0~000001 
- 0~000001 
- 0*000001 
- 0~000000 
- 0~000000 
+ 0~000000 

The surface shear due to $ is 
7 = - eUpWeixj"(0) = €uoeix24(301)) i~/r(g) .  (4.15) 

The total normal force on the cylinder is thus 

N = €@2a(&+ X )  - s2na3w2p + as,'" cos X a X .  (4.16) 

The first term on the right-hand side of (4.16) is the centrifugal force, where 
is the mass of the cylinder and X is the virtual mass of the cylinder produced 
by the rotary translation of the frame of reference. The second term can be 
identified as the lift due to circulation and the third is the normal force due to 
viscous shear. Equation (4.16) can be simplified to 

N P s  7765 - = m - - € 7 7 + & 7  +O(&)) 
po2a3 p a .13~)  

(4.17) 

where ps is the density of the solid cylinder. The total drag is entirely due to 
shear stress since the normal pressure of the inviscid outer flow does not con- 
tribute to the drag: 

The surface shear due to the non-periodic flow is 

(4.18) 
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The total torque experienced by the eccentric cylinder is the sum of the torques 
due to the primary vortex ln r from (1.1 I), the non-periodic shear (4.19) and the 
drag (4.18): 

T = ~ITU',UU - 27r~'T + SUD (4.20) 

or 

(4.21) 

5. Low Reynolds numbers R < 1 

From (2.9)) the equation 
For Reynolds numbers lower than order unity there are no boundary layers. 

adequately describes the periodic solution for all r .  The solution satisfying 
boundary conditions (1.13) and (1.14) is 

The Hankel functions in (5.2) are tabulated in, for example, Jahnke & Emde 
(1945) and Tolke (1936). Note that even for very small R the left-hand side of 
(5.1) cannot be neglected. It represents an 'Oseen' correction to the Stokes flow 
which becomes important at large radii. As R approaches zero we can recover 
from (5.2) the troublesome rlnr  term which appears in the solution of uniform 
Stokes flow over a cylinder. 

The non-periodic flow caused by nonlinear effects is governed by (3.7). From 

€R d 
8r &A' B(r) = -- (5.3) 

-- 1 H.~~,C(~R)+I]  [ ~ 1 1 ) [ ( i ~ ) * r ] ] * )  . (5.4) 
r 

The streamlines $(r),  which are concentric, can then be calculated from (3.9); 
their direction depends on the magnitude of R. 

The periodic pressure and shear distributions are 
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R 

FIGURE 2. The integral I @ ) ,  from (5.10). 

The total normal force may be obtained by integration: 

cos x - @sin 2) C Z ~  

P S  2H$1)[ (iR)B] 
P [ (iR)*HJl)[(iR)S] 

= €n---€n+2€7r 1- 

where the centrifugal forces and the lift due to circulation have been included. 
The drag on the cylinder is found to be 

From (3.9), (5.3) and (5.4) we have 

where 

(5.9) 

(5.10) 

which cannot be evaluated analytically. Numerical integration gives the results 
shown in figure 2 .  

The shear stress due to the non-periodic flow $(r) is then 
- 
7 = -pU€i#F”(l) = pw+€21(R). 

The total torque is the sum 
(5.11) 

T = 2na2pw - 2na2;? + eaD (5.12)l 

or (5.13) 
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I I I I 
0 .5 0 100 150 

R 

0 0.1 0.2 
R 

0.3 

FIGURE 3. Normalized total torque versus Reynolds number at different eccentricities. 
(a )  I < R < s-Q. ( b )  R < 1. 

6. Discussion 
The most important result is the change in torque due to eccentricity. For high 

Reynolds numbers, such that 1 4 R < d,  the torque is represented by equation 
(4.21). The first term on the right-hand side represents the torque when eccen- 
tricity is absent; the second term is due to the nonlinear Reynolds stress, which 
causes a reduction in torque; the third term, an increase in torque, is due to the 
linear drag on the cylinder. Equation (4.21) is plotted in figure 3 (a)  €or the range 
of Reynolds numbers considered. The total torque is decreased because of 
eccentricity. 

For low Reynolds numbers the interpretation of the various terms in (5.13) 
is similar to that of those in (4.21). However, the linear increase in torque is 
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now comparable with the nonlinear reduction in torque. Figure 3 (b)  shows that 
the torque is increased when R < 0,145 and decreased when R > 0.145, where 
nonlinear effects become more important. In  this figure results for the values 
0.4 and 0.5 of E ,  a parameter supposed much smaller than one, are given for 
comparison. 

It is easy to see why the linear drag, multiplied by the moment arm ea, in- 
creases the torque. The nonlinear decrease in torque is due to the fact that the 
Reynolds stress produces a non-periodic streaming in the same direction as that 
of the rotation. The local shear stress, and thus the torque, are then alleviated. 
Riley (1971) considered a different problem, in which the cylinder is not rotating 
a t  all but its geometric axis is describing a circular motion. He also concluded 
that the non-periodic streaming is in the same direction as the circular motion. 
(Note: in our case the cylinder is rotating with the same frequency as the geo- 
metric axis.) Physically, the cylinder is performing a periodic scraping motion 
with respect to the outer fluid. The (nonlinear) mean part is thus in the same 
direction as the scraping. 

Lastly we mention a paper by Wang (1969) in which a rotating cylinder is 
vibrating laterally along a straight line. The rotation frequency is assumed to 
be either very large or very small compared with the vibration frequency. 
Because this is basically an unsteady problem, the time variable cannot be 
eliminated by a co-ordinate transform as in the present case. The steady stream- 
lines are found by similar matched asymptotic expansions. 
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